OriDB Curated Paper

Please contact OriDB if you think this paper has been mis-annotated.

Defining replication origin efficiency using DNA fiber assays.

Sandie Tuduri, Hélène Tourrière, Philippe Pasero

Chromosome Res. (2010), 18(1):91-102PubMed | Chromosome Res.

The timely duplication of eukaryotic genomes depends on the coordinated activation of thousands of replication origins distributed along the chromosomes. Origin activation follows a temporal program that is imposed by the chromosomal context and is under the control of S-phase checkpoints. Although the general mechanisms regulating DNA replication are now well-understood at the level of individual origins, little is known on the coordination of thousands of initiation events at a genome-wide level. Recent studies using DNA combing and other single-molecule assays have shown that eukaryotic genomes contain a large excess of replication origins. Most of these origins remain "dormant" in normal growth conditions but are activated when fork progression is impeded. In this review, we discuss how DNA fiber technologies have changed our view of eukaryotic replication programs and how origin redundancy contributes to the maintenance of genome integrity in eukaryotic cells.

OriDB annotation of this paper:

ARS assay

None curated.

2D gel

None curated.

ChIP of replication origin proteins

None curated.

Replication timing

None curated.

Replication in hydroxyurea

None curated.

Predicted origins

None curated.

Confirmed sequence element

None curated.

Predicted sequence element

None curated.

The data on this page come directly from PubMed and OriDB databases, please report any errors to OriDB.
This page is new! Please let us know of any problems you experience.